JUPITER TRANSIT FORM 1

Date: Observer:			Start time: Location:			
Seeing:						
DRAWING 1			DRAWING 2			
		P			P	N
Start time:	UT	ω ₁ :ο	Start time:		<u>UT</u> ω ₁ :_	0
Magnification:	X	ω ₂ :ο	Magnification	·	χ ω ₂ :_	0
DRAWING 3			DRAWING 4			
		P			P	N
Start time:	UT	ω ₁ :•	Start time:		<u>UT</u> ω ₁ :_	0
	X	ω ₂ :ο	Magnification		\mathbf{X} ω_2 :	0

JUPITER TRANSIT FORM 2

Transit timings

Use this form to record when the specific features on Jupiter you are observing cross the Central Meridian. Having drawn the planet's disc on part 1 of this form, give each feature a number on the drawing and then note it in the **No**. column here. When Jupiter's rotation carries the feature across the Central Meridian, note the time to the nearest minute in the **UT** column; this is the feature's transit time. In the **Int'y** column, note your intensity estimate for the feature (0 being the brightest, 10 being a black sky), and note the observing conditions in the **Seeing** column using the Antoniadi Scale (I being the best seeing, V being the worst). After the observing session you can input the transit time into software like WinJUPOS, which will then convert the timings into System I or II longitudes. Note this longitude in the λ_1 column if it's a System I feature and λ_2 if it's in System II. λ signifies a specific feature's longitude.

No.	Feature	UT	λ ₁ (°)	λ ₂ (°)	Int'y	Seeing